Mo $K\alpha$ radiation

 $0.21 \times 0.16 \times 0.12 \text{ mm}$

 $\mu = 0.47 \text{ mm}^-$

T = 173 K

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetra-*n*-butylammonium tricyanido-[*N*-(2-pyridylcarbonyl)pyridine-2carboximidato]ferrate(III) dihydrate

Yunyun Xiao,^a Xiaoping Shen^a* and Yizhi Li^b

^aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China, and ^bState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China Correspondence e-mail: xiaopingshen@163.com

Received 7 November 2011; accepted 19 November 2011

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.013 Å; R factor = 0.060; wR factor = 0.135; data-to-parameter ratio = 16.2.

In the title compound, $(C_{16}H_{36}N)[Fe(C_{12}H_8N_3O_2)(CN)_3]$ -2H₂O, the tetra-*n*-butylammonium ion has a tetrahedral configuration around the N atom, while the Fe^{III} atom of the tricyanido[*N*-(2-pyridylcarbonyl)pyridine-2-carboximidato]-iron(III) anion adopts a distorted octahedral geometry. O–H···O and O–H···N hydrogen bonds link the components in the crystal structure.

Related literature

For related structures of the $[Fe(bpca)(CN)_3]^-$ anion (bpca is bis(2-pyridylcarbonyl)amidate) with different cations, see: Lescouëzec *et al.* (2004); Ouahab *et al.* (2005). For related cyanido-bridged complexes with $[Fe(bpca)(CN)_3]^-$ as a building block, see: Lescouëzec *et al.* (2004); Wen *et al.* (2006).

Experimental

Crystal data (C₁₆H₃₆N)[Fe(C₁₂H₈N₃O₂)(CN)₃]-2H₂O

 $M_r = 638.61$ Monoclinic, $P2_1/n$

a = 13.142 (2) Å
b = 15.663 (3) Å
c = 17.097 (3) Å
$\beta = 90.48 (3)^{\circ}$
V = 3519.0 (11) Å ³

Data collection

Rigaku Saturn 724 CCD	17432 measured reflections
diffractometer	6359 independent reflections
Absorption correction: multi-scan	4300 reflections with $I > 2\sigma(I)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.063$
$T_{\min} = 0.887, \ T_{\max} = 0.904$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.060$	6 restraints
$wR(F^2) = 0.135$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$
6359 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
392 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1W - H1X \cdots O1^{i}$	0.85	2.12	2.964 (10)	173
$O1W - H1Y \cdot \cdot \cdot O2W$	0.85	2.25	3.058 (10)	158
$O2W - H2X \cdot \cdot \cdot N2^{ii}$	0.85	2.04	2.895 (10)	180
$O2W - H2Y \cdot \cdot \cdot N3$	0.85	2.18	3.029 (11)	174

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *CrystalClear* (Rigaku, 2008); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXS97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors thank the Natural Science Foundation of Jiangsu Province (No. BK2009196) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2426).

References

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Higashi, T. (1995). *ABSCOR*. Rigaku Coporation, Tokyo, Japan.

Lescouëzec, R., Vaissermann, J., Toma, L. M., Carrasco, R., Lloret, F. & Julve, M. (2004). *Inorg. Chem.* 43, 2234–2236.

Ouahab, L., Setifi, F., Golhen, S., Imakubo, T., Lescouëzec, R., Lloret, F., Julve, M. & Swietlik, R. (2005). C. R. Chim. 8, 1286–1297.

Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wen, H. R., Wang, C. F., Zuo, J. L., Song, Y., Zeng, X. R. & You, X. Z. (2006). *Inorg. Chem.* 45, 582–590.

Acta Cryst. (2011). E67, m1879 [doi:10.1107/S1600536811049415]

Tetra-*n*-butylammonium tricyanido[*N*-(2-pyridylcarbonyl)pyridine-2-carboximidato]ferrate(III) dihydrate

Y. Xiao, X. Shen and Y. Li

Comment

 $[Fe(bpca)(CN)_3]^-$ {bpca = [*N*-(2-pyridylcarbonyl) pyridine-2-carboximidate}, a low-spin iron^{III} complex with three cyanide ligands and a tridentate N-donor ligand around iron^{III} in a *mer* arrangement, is an interesting building block because it can not only coordinate to transition metal ions to form various polynuclear and one-dimensional structures with fascinating magnetic properties (Lescouëzec *et al.*, 2004; Wen *et al.*, 2006), but also combine with functionalized organic donors such as DIET and DIEDO (DIET = diiodoethylenedithotetrathiavalene and DIEDO = diiodoethylenedioxotetrathiavalene) to form charge transfer salts, which showed interesting electrical conducting and magnetic behaviors (Ouahab *et al.*, 2005). In a previous study, the crystal structure of the mononuclear complex PPh₄[Fe^{III}(bpca)(CN)₃].H₂O (PPh₄ = tetraphenylphosphonium) has been reported by Lescouëzec and his coworkers (Lescouëzec *et al.*, 2004). Recently, we have synthesized the compound [(*n*-C₄H₉)₄N][Fe^{III}(bpca)(CN)₃].2H₂O, which is an analog of PPh₄[Fe^{III}(bpca)(CN)₃].H₂O with the same anion. Herein, the crystal structure of the obtained complex is presented.

The structure of the title compound is similar to that of PPh₄[Fe^{III}(bpca)(CN)₃].H₂O except with different cations. The asymmetric unit of the title complex consists of a $[(n-C_4H_9)_4N]^+$ cation, a $[Fe^{III}(bpca)(CN)_3]^-$ anion and two H₂O molecules (Fig. 1). As usual, the $[(n-C_4H_9)_4N]^+$ cation has a tetrahedral configuration around the N atom. In the $[Fe^{III}(bpca)(CN)_3]^-$ anion, the Fe^{III} ion is coordinated by three carbon atoms of cyanide groups and three N-donors from bpca ligand in a *mer*-arrangement, which results in a distorted octahedral geometry. The Fe1—N(bpca) bond distances vary in the range of 1.735 (8)–1.959 (7) Å, which are close to those (1.893 (2)–1.959 (2) Å) found in the complex of PPh₄[Fe^{III}(bpca)(CN)₃].H₂O (Lescouëzec *et al.*, 2004). The Fe1—C(cyano) bond lengths (1.933 (10)–1.966 (10) Å) are also similar to those [1.937 (3)–1.951 (3) Å] reported for PPh₄[Fe^{III}(bpca)(CN)₃].H₂O.

There are some hydrogen-bonding interactions between water molecules, between water and ligand bpca, and between water and the N atom of cyano groups, which hold two adjacent $[Fe^{III}(bpca)(CN)_3]^-$ together by H-bonds (Table 1, Fig. 2).

Experimental

The complex of Bu₄N[Fe^{III}(bpca)(CN)₃].H₂O was prepared according to a literature method (Wen *et al.*, 2006). Then, 0.1 mmoL (62 mg) of Bu₄N[Fe^{III}(bpca)(CN)₃].H₂O was added to a MeCN/H₂O [4/1(V/V), 20 ml] mixture with stirring, The resulting solution was filtered and the filtrate was left to allow slow evaporation in the dark at room temperature. Yellow block-shaped crystals of the title complex suitable for single-crystal X-ray diffraction were obtained after two weeks. Anal. Calc. for C₃₁H₄₈Fe₁N₇O₄: C, 58.30; H, 7.58; N, 15.35; Fe, 8.75%. Found: C, 58.56; H, 7.73; N, 15.01; Fe, 8.98%.

Refinement

All non-H atoms were refined with anisotropic thermal parameters. All H atoms from the ligand bpca and $[(n-C_4H_9)_4N]^+$ cation were calculated in idealized positions and included in the refinement in a riding mode with U_{iso} for H assigned as 1.2 or 1.5 times U_{eq} of the attached atoms. The H atoms bound to oxygen atoms from crystallized water molecules were located from difference maps, initially refined with O—H and H—H restraints (O—H = 0.850 (1) Å, H—H > 1.300 (1) Å), and then as riding, with $U_{iso}(H) = 1.2U_{eq}(O)$.

Figures

Fig. 1. *ORTEP* diagram of the title complex with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.

Fig. 2. Packing diagram of the title complex, showing the hydrogen-bonding interactions. The $[(n-C_4H_9)_4N]^+$ cations have been omitted for clarity. Symmetry codes: (i) x + 1/2, -y + 1/2, z - 1/2; (ii) - x + 3/2, y - 1/2, -z + 1/2.

Tetra-n-butylammonium tricyanido[N-(2-pyridylcarbonyl)pyridine-2-carboximidato]ferrate(III) dihydrate

Crystal data

$(C_{16}H_{36}N)[Fe(C_{12}H_8N_3O_2)(CN)_3]$ ·2H ₂ O	F(000) = 1364
$M_r = 638.61$	$D_{\rm x} = 1.205 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 4928 reflections
a = 13.142 (2) Å	$\theta = 2.1 - 24.8^{\circ}$
b = 15.663 (3) Å	$\mu = 0.47 \text{ mm}^{-1}$
c = 17.097 (3) Å	T = 173 K
$\beta = 90.48 \ (3)^{\circ}$	Block, yellow
$V = 3519.0 (11) \text{ Å}^3$	$0.21\times0.16\times0.12~mm$
Z = 4	

Data collection

Rigaku Saturn 724 CCD diffractometer	6359 independent reflections
Radiation source: fine-focus sealed tube	4300 reflections with $I > 2\sigma(I)$

graphite	$R_{\rm int} = 0.063$
φ and ω scans	$\theta_{\text{max}} = 25.3^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$h = -15 \rightarrow 13$
$T_{\min} = 0.887, T_{\max} = 0.904$	$k = -13 \rightarrow 18$
17432 measured reflections	$l = -12 \rightarrow 20$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.060$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.135$	H-atom parameters constrained
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0648P)^2 + 0.034P]$ where $P = (F_o^2 + 2F_c^2)/3$
6359 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
392 parameters	$\Delta \rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
6 restraints	$\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.7225 (7)	0.4358 (6)	-0.0451 (5)	0.041 (2)
C2	0.7239 (7)	0.3334 (6)	0.1624 (6)	0.039 (2)
C3	0.6909 (7)	0.4886 (6)	0.0945 (6)	0.043 (2)
C4	0.9232 (7)	0.4724 (6)	0.0962 (6)	0.046 (2)
H4	0.8835	0.5192	0.1139	0.055*
C5	1.0283 (7)	0.4770 (6)	0.0993 (6)	0.050 (2)
H5	1.0606	0.5270	0.1188	0.059*
C6	1.0860 (7)	0.4090 (7)	0.0742 (6)	0.051 (3)
H6	1.1582	0.4114	0.0768	0.061*
C7	1.0393 (7)	0.3399 (6)	0.0463 (5)	0.044 (2)
H7	1.0799	0.2941	0.0277	0.053*
C8	0.9346 (7)	0.3315 (6)	0.0429 (6)	0.043 (2)

C9	0.8779 (8)	0.2534 (6)	0.0144 (6)	0.050(2)
C10	0.6997 (7)	0.2185 (6)	-0.0096 (6)	0.046 (2)
C11	0.5957 (6)	0.2496 (5)	0.0048 (5)	0.0338 (19)
C12	0.5061 (7)	0.2080 (6)	-0.0132 (6)	0.046 (2)
H12	0.5073	0.1516	-0.0335	0.055*
C13	0.4141 (7)	0.2496 (6)	-0.0013 (6)	0.040 (2)
H13	0.3521	0.2211	-0.0135	0.048*
C14	0.4115 (6)	0.3322 (6)	0.0283 (5)	0.041 (2)
H14	0.3485	0.3605	0.0361	0.049*
C15	0.5029 (6)	0.3725 (6)	0.0463 (6)	0.039 (2)
H15	0.5024	0.4288	0.0671	0.047*
C16	0.5319 (7)	0.4149 (5)	0.7455 (5)	0.0369 (19)
H16A	0.4730	0.4233	0.7804	0.044*
H16B	0.5941	0.4171	0.7785	0.044*
C17	0.5240 (7)	0.3253 (6)	0.7090 (6)	0.043 (2)
H17A	0.4616	0.3203	0.6765	0.052*
H17B	0.5838	0.3134	0.6758	0.052*
C18	0.5204 (8)	0.2630 (6)	0.7782 (6)	0.051 (2)
H18A	0.5767	0.2779	0.8146	0.061*
H18B	0.4560	0.2730	0.8064	0.061*
C19	0.5275 (8)	0.1699 (7)	0.7611 (7)	0.058 (3)
H19A	0.4918	0.1574	0.7119	0.087*
H19B	0.4962	0.1375	0.8036	0.087*
H19C	0.5992	0.1535	0.7565	0.087*
C20	0.4472 (7)	0.4901 (6)	0.6316 (5)	0.043 (2)
H20A	0.4527	0.5411	0.5977	0.051*
H20B	0.4512	0.4391	0.5976	0.051*
C21	0.3459 (7)	0.4911 (6)	0.6706 (6)	0.050 (3)
H21A	0.3421	0.5405	0.7067	0.060*
H21B	0.3374	0.4383	0.7017	0.060*
C22	0 2616 (8)	0 4973 (6)	0 6096 (7)	0.054(3)
H22A	0.2663	0 4491	0 5724	0.065*
H22B	0.2679	0.5513	0.5799	0.065*
C23	0.1598 (7)	0 4947 (7)	0.6519(7)	0.057(3)
H23A	0.1719	0.4909	0 7084	0.086*
H23R	0.1209	0 4448	0.6343	0.086*
H23C	0.1213	0 5468	0.6401	0.086*
C24	0.5404 (7)	0.5681 (6)	0.7370 (5)	0.000
Н24А	0.6013	0.5648	0.7713	0.050*
H24B	0.4798	0.5701	0.7709	0.050*
C25	0 5454 (7)	0.6510.(6)	0.6889(6)	0.020
H25A	0.6000	0.6466	0.6496	0.057*
H25R	0.4800	0.6600	0.6609	0.057*
C26	0.5662 (7)	0.7246 (6)	0.7426 (6)	0.037
H26A	0.6334	0 7170	0.7682	0.054*
H26B	0 5139	0.7266	0.7839	0.054*
C27	0 5649 (8)	0.8075 (6)	0.6969 (7)	0.054(3)
H27A	0.6076	0.8016	0.6505	0.081*
H27B	0 5912	0.8537	0.7299	0.081*
	0.071-	0.0007	0=>>	0.001

H27C	0.4949	0.8207	0.6807	0.081*
C28	0.6286 (7)	0.4810 (6)	0.6329 (6)	0.043 (2)
H28A	0.6229	0.4262	0.6044	0.052*
H28B	0.6246	0.5273	0.5936	0.052*
C29	0.7327 (7)	0.4846 (6)	0.6714 (6)	0.045 (2)
H29A	0.7475	0.5434	0.6896	0.054*
H29B	0.7353	0.4458	0.7171	0.054*
C30	0.8095 (7)	0.4574 (6)	0.6112 (6)	0.044 (2)
H30A	0.7961	0.3974	0.5962	0.053*
H30B	0.8009	0.4931	0.5638	0.053*
C31	0.9170 (7)	0.4649 (7)	0.6398 (7)	0.054 (3)
H31D	0.9180	0.4931	0.6909	0.081*
H31E	0.9565	0.4987	0.6025	0.081*
H31F	0.9469	0.4078	0.6446	0.081*
Fe1	0.72938 (9)	0.37769 (8)	0.05494 (8)	0.0383 (4)
N1	0.7165 (6)	0.4653 (5)	-0.1095 (5)	0.047 (2)
N2	0.7152 (5)	0.3071 (5)	0.2246 (5)	0.0452 (19)
N3	0.6753 (6)	0.5540 (6)	0.1211 (5)	0.051 (2)
N4	0.8754 (5)	0.3996 (5)	0.0672 (4)	0.0392 (17)
N5	0.7711 (5)	0.2806 (5)	0.0184 (4)	0.0405 (18)
N6	0.5944 (5)	0.3314 (5)	0.0340 (4)	0.0371 (17)
N7	0.5353 (5)	0.4892 (4)	0.6877 (4)	0.0375 (17)
01	0.9148 (4)	0.1857 (4)	0.0004 (4)	0.0468 (16)
O2	0.7099 (5)	0.1495 (4)	-0.0387 (4)	0.0491 (17)
O1W	0.8661 (5)	0.8573 (5)	0.0106 (4)	0.061 (2)
H1X	0.9274	0.8405	0.0077	0.073*
H1Y	0.8287	0.8276	0.0404	0.073*
O2W	0.7877 (5)	0.7228 (4)	0.1248 (4)	0.0450 (16)
H2X	0.7868	0.7474	0.1691	0.054*
H2Y	0.7576	0.6750	0.1200	0.054*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.043 (5)	0.047 (5)	0.032 (5)	-0.018 (4)	0.000 (4)	0.010 (4)
C2	0.042 (5)	0.041 (5)	0.035 (5)	-0.002 (4)	-0.006 (4)	0.008 (4)
C3	0.051 (5)	0.038 (5)	0.039 (5)	-0.002 (4)	-0.009 (4)	0.019 (4)
C4	0.041 (5)	0.049 (5)	0.047 (6)	-0.007 (4)	0.001 (4)	0.023 (5)
C5	0.047 (5)	0.053 (6)	0.048 (6)	-0.009 (4)	-0.010 (5)	0.020 (5)
C6	0.038 (5)	0.061 (6)	0.053 (6)	-0.010 (4)	-0.011 (4)	0.018 (5)
C7	0.045 (5)	0.054 (5)	0.032 (5)	-0.003 (4)	-0.005 (4)	0.014 (4)
C8	0.041 (5)	0.042 (5)	0.046 (6)	0.001 (4)	-0.003 (4)	0.022 (4)
C9	0.062 (6)	0.043 (5)	0.044 (6)	0.015 (4)	-0.014 (5)	-0.008 (5)
C10	0.041 (5)	0.039 (5)	0.059 (7)	0.003 (4)	-0.008 (4)	0.011 (5)
C11	0.030 (4)	0.036 (4)	0.036 (5)	-0.001 (3)	-0.003 (3)	0.009 (4)
C12	0.047 (5)	0.043 (5)	0.048 (6)	-0.009 (4)	-0.001 (4)	0.014 (5)
C13	0.037 (5)	0.042 (5)	0.041 (5)	-0.008 (4)	-0.007 (4)	0.019 (4)
C14	0.034 (4)	0.051 (5)	0.037 (5)	0.003 (4)	-0.005 (4)	0.014 (4)

C15	0.035 (4)	0.041 (5)	0.042 (5)	-0.003 (3)	-0.003 (4)	-0.001 (4)
C16	0.046 (5)	0.038 (5)	0.027 (4)	0.014 (4)	0.004 (4)	0.002 (4)
C17	0.051 (5)	0.041 (5)	0.038 (6)	0.007 (4)	0.004 (4)	0.018 (4)
C18	0.055 (6)	0.051 (6)	0.048 (6)	0.002 (4)	0.007 (5)	0.015 (5)
C19	0.070 (7)	0.052 (6)	0.054 (7)	-0.006 (5)	0.029 (5)	0.016 (5)
C20	0.058 (6)	0.043 (5)	0.028 (5)	0.016 (4)	-0.004 (4)	-0.011 (4)
C21	0.058 (6)	0.046 (5)	0.046 (6)	0.021 (4)	-0.012 (5)	-0.020 (5)
C22	0.060 (6)	0.045 (5)	0.057 (7)	0.012 (4)	-0.008 (5)	-0.016 (5)
C23	0.050 (6)	0.055 (6)	0.067 (8)	0.017 (4)	-0.002 (5)	-0.032 (6)
C24	0.053 (5)	0.044 (5)	0.027 (5)	0.001 (4)	0.003 (4)	-0.006 (4)
C25	0.052 (6)	0.048 (5)	0.042 (6)	0.009 (4)	-0.006 (4)	-0.010 (5)
C26	0.047 (5)	0.048 (5)	0.039 (5)	-0.020 (4)	0.005 (4)	-0.014 (4)
C27	0.065 (6)	0.048 (6)	0.048 (6)	-0.006 (4)	-0.020 (5)	-0.005 (5)
C28	0.054 (5)	0.038 (5)	0.037 (5)	0.018 (4)	0.012 (4)	0.007 (4)
C29	0.057 (6)	0.041 (5)	0.038 (5)	0.011 (4)	0.021 (4)	0.010 (4)
C30	0.045 (5)	0.040 (5)	0.048 (6)	0.012 (4)	0.008 (4)	0.001 (4)
C31	0.054 (6)	0.054 (6)	0.054 (7)	0.003 (4)	0.012 (5)	0.017 (5)
Fe1	0.0407 (7)	0.0414 (8)	0.0326 (7)	-0.0164 (5)	-0.0082 (5)	0.0165 (6)
N1	0.045 (4)	0.047 (4)	0.048 (5)	-0.021 (3)	0.000 (4)	0.014 (4)
N2	0.041 (4)	0.054 (5)	0.041 (5)	-0.006 (3)	-0.004 (3)	0.011 (4)
N3	0.055 (5)	0.054 (5)	0.045 (5)	0.015 (4)	-0.005 (4)	0.014 (4)
N4	0.037 (4)	0.049 (4)	0.032 (4)	-0.010 (3)	-0.003 (3)	0.012 (3)
N5	0.037 (4)	0.054 (4)	0.031 (4)	-0.010 (3)	-0.006 (3)	0.023 (4)
N6	0.038 (4)	0.041 (4)	0.032 (4)	-0.002 (3)	-0.002 (3)	0.014 (3)
N7	0.046 (4)	0.041 (4)	0.026 (4)	0.008 (3)	-0.006 (3)	-0.008 (3)
O1	0.042 (3)	0.051 (4)	0.047 (4)	0.014 (3)	-0.002 (3)	-0.012 (3)
O2	0.052 (4)	0.045 (4)	0.050 (4)	0.017 (3)	-0.008 (3)	0.002 (3)
O1W	0.065 (5)	0.066 (5)	0.052 (5)	-0.026 (3)	-0.007 (4)	-0.020 (4)
O2W	0.053 (4)	0.044 (3)	0.038 (4)	-0.019 (3)	0.012 (3)	-0.015 (3)

Geometric parameters (Å, °)

C1—N1	1.195 (12)	C20—N7	1.497 (11)
C1—Fe1	1.940 (9)	C20—H20A	0.9900
C2—N2	1.146 (11)	C20—H20B	0.9900
C2—Fe1	1.966 (10)	C21—C22	1.518 (14)
C3—N3	1.140 (12)	C21—H21A	0.9900
C3—Fe1	1.933 (11)	C21—H21B	0.9900
C4—C5	1.383 (13)	C22—C23	1.526 (15)
C4—N4	1.391 (12)	C22—H22A	0.9900
C4—H4	0.9500	С22—Н22В	0.9900
C5—C6	1.379 (15)	C23—H23A	0.9800
С5—Н5	0.9500	С23—Н23В	0.9800
C6—C7	1.331 (14)	С23—Н23С	0.9800
С6—Н6	0.9500	C24—N7	1.497 (11)
С7—С8	1.383 (12)	C24—C25	1.539 (14)
С7—Н7	0.9500	C24—H24A	0.9900
C8—N4	1.386 (12)	C24—H24B	0.9900
C8—C9	1.511 (14)	C25—C26	1.499 (12)

C9—O1	1.192 (11)	C25—H25A	0.9900
C9—N5	1.470 (12)	С25—Н25В	0.9900
C10—O2	1.197 (11)	C26—C27	1.515 (14)
C10—N5	1.431 (12)	C26—H26A	0.9900
C10-C11	1.474 (12)	С26—Н26В	0.9900
C11—N6	1.375 (11)	C27—H27A	0.9800
C11—C12	1.378 (12)	С27—Н27В	0.9800
C12—C13	1.390 (13)	С27—Н27С	0.9800
C12—H12	0.9500	C28—C29	1.515 (14)
C13—C14	1.390 (13)	C28—N7	1.555 (11)
C13—H13	0.9500	C28—H28A	0.9900
C14—C15	1.389 (12)	C28—H28B	0.9900
C14—H14	0.9500	C29—C30	1.510 (12)
C15—N6	1.383 (11)	С29—Н29А	0.9900
C15—H15	0.9500	С29—Н29В	0.9900
C16—N7	1.528 (11)	C30—C31	1.495 (14)
C16—C17	1.540 (13)	C30—H30A	0.9900
C16—H16A	0.9900	C30—H30B	0.9900
C16—H16B	0.9900	C31—H31D	0.9800
C17—C18	1.536 (13)	С31—Н31Е	0.9800
С17—Н17А	0.9900	C31—H31F	0.9800
С17—Н17В	0.9900	Fe1—N5	1.734 (8)
C18—C19	1.490 (15)	Fe1—N6	1.946 (7)
C18—H18A	0.9900	Fe1—N4	1.959 (7)
C18—H18B	0.9900	O1W—H1X	0.8500
C19—H19A	0.9800	O1W—H1Y	0.8500
C19—H19B	0.9800	O2W—H2X	0.8502
C19—H19C	0.9800	O2W—H2Y	0.8499
C20—C21	1.494 (14)		
N1—C1—Fe1	174.6 (8)	С22—С23—Н23С	109.5
N2—C2—Fe1	176.4 (8)	H23A—C23—H23C	109.5
N3—C3—Fe1	174.6 (8)	H23B—C23—H23C	109.5
C5—C4—N4	120.3 (9)	N7—C24—C25	113.4 (7)
С5—С4—Н4	119.9	N7—C24—H24A	108.9
N4—C4—H4	119.9	C25—C24—H24A	108.9
C6—C5—C4	120.0 (9)	N7—C24—H24B	108.9
С6—С5—Н5	120.0	C25—C24—H24B	108.9
C4—C5—H5	120.0	H24A—C24—H24B	107.7
C7—C6—C5	119.1 (9)	C26—C25—C24	109.3 (8)
С7—С6—Н6	120.4	C26—C25—H25A	109.8
С5—С6—Н6	120.4	C24—C25—H25A	109.8
C6—C7—C8	123.2 (10)	C26—C25—H25B	109.8
С6—С7—Н7	118.4	C24—C25—H25B	109.8
С8—С7—Н7	118.4	H25A—C25—H25B	108.3
C7—C8—N4	118.4 (8)	C25—C26—C27	110.0 (8)
C7—C8—C9	125.3 (9)	С25—С26—Н26А	109.7
N4—C8—C9	116.3 (8)	С27—С26—Н26А	109.7
01—C9—N5	131.2 (9)	С25—С26—Н26В	109.7
01—C9—C8	125.8 (9)	С27—С26—Н26В	109.7

N5—C9—C8	102.6 (7)	H26A—C26—H26B	108.2
O2-C10-N5	132.7 (9)	С26—С27—Н27А	109.5
O2—C10—C11	118.3 (8)	С26—С27—Н27В	109.5
N5—C10—C11	109.0 (8)	H27A—C27—H27B	109.5
N6—C11—C12	120.6 (8)	С26—С27—Н27С	109.5
N6—C11—C10	112.5 (7)	H27A—C27—H27C	109.5
C12—C11—C10	126.7 (9)	H27B—C27—H27C	109.5
C11—C12—C13	119.3 (9)	C29—C28—N7	116.7 (8)
C11—C12—H12	120.4	C29—C28—H28A	108.1
C13—C12—H12	120.4	N7—C28—H28A	108.1
C14—C13—C12	120.8 (8)	C29—C28—H28B	108.1
C14—C13—H13	119.6	N7—C28—H28B	108.1
С12—С13—Н13	119.6	H28A—C28—H28B	107.3
C15—C14—C13	118.7 (8)	C30—C29—C28	107.4 (8)
C15—C14—H14	120.6	С30—С29—Н29А	110.2
C13—C14—H14	120.6	С28—С29—Н29А	110.2
N6—C15—C14	120.4 (8)	С30—С29—Н29В	110.2
N6—C15—H15	119.8	С28—С29—Н29В	110.2
C14—C15—H15	119.8	H29A—C29—H29B	108.5
N7—C16—C17	115.7 (7)	C31—C30—C29	112.9 (9)
N7—C16—H16A	108.4	С31—С30—Н30А	109.0
C17—C16—H16A	108.4	С29—С30—Н30А	109.0
N7—C16—H16B	108.4	С31—С30—Н30В	109.0
C17—C16—H16B	108.4	С29—С30—Н30В	109.0
H16A—C16—H16B	107.4	H30A—C30—H30B	107.8
C18—C17—C16	105.6 (8)	C30-C31-H31D	109.5
С18—С17—Н17А	110.6	C30—C31—H31E	109.5
С16—С17—Н17А	110.6	H31D-C31-H31E	109.5
C18—C17—H17B	110.6	C30—C31—H31F	109.5
С16—С17—Н17В	110.6	H31D-C31-H31F	109.5
H17A—C17—H17B	108.8	H31E—C31—H31F	109.5
C19—C18—C17	117.9 (9)	N5—Fe1—C3	176.6 (4)
C19—C18—H18A	107.8	N5—Fe1—C1	96.1 (4)
C17—C18—H18A	107.8	C3—Fe1—C1	82.9 (4)
C19—C18—H18B	107.8	N5—Fe1—N6	84.1 (3)
C17—C18—H18B	107.8	C3—Fe1—N6	99.1 (4)
H18A—C18—H18B	107.2	C1—Fe1—N6	88.7 (3)
C18—C19—H19A	109.5	N5—Fe1—N4	83.1 (3)
C18—C19—H19B	109.5	C3—Fe1—N4	93.6 (4)
H19A—C19—H19B	109.5	C1—Fe1—N4	92.9 (3)
С18—С19—Н19С	109.5	N6—Fe1—N4	167.2 (3)
H19A—C19—H19C	109.5	N5—Fe1—C2	92.4 (4)
H19B—C19—H19C	109.5	C3—Fe1—C2	88.8 (4)
C21—C20—N7	113.7 (8)	C1—Fe1—C2	171.2 (4)
C21—C20—H20A	108.8	N6—Fe1—C2	90.0 (3)
N7—C20—H20A	108.8	N4—Fe1—C2	90.3 (3)
C21—C20—H20B	108.8	C8—N4—C4	119.0 (7)
N7—C20—H20B	108.8	C8—N4—Fe1	112.6 (6)
H20A-C20-H20B	107.7	C4—N4—Fe1	128.4 (6)

C20—C21—C22	110.0 (9)	C10—N5—C9	114.2 (8)
C20—C21—H21A	109.7	C10—N5—Fe1	120.6 (6)
C22—C21—H21A	109.7	C9—N5—Fe1	125.2 (6)
C20-C21-H21B	109.7	C11—N6—C15	120.1 (7)
C22—C21—H21B	109.7	C11—N6—Fe1	113.6 (5)
H21A—C21—H21B	108.2	C15—N6—Fe1	126.3 (6)
C21—C22—C23	108.1 (9)	C24—N7—C20	112.6 (6)
C21—C22—H22A	110.1	C24—N7—C16	105.4 (7)
C23—C22—H22A	110.1	C20—N7—C16	113.3 (7)
C21—C22—H22B	110.1	C24—N7—C28	112.0 (7)
С23—С22—Н22В	110.1	C20—N7—C28	103.0 (7)
H22A—C22—H22B	108.4	C16—N7—C28	110.7 (6)
С22—С23—Н23А	109.5	H1X—O1W—H1Y	114.6
С22—С23—Н23В	109.5	H2X—O2W—H2Y	118.5
H23A—C23—H23B	109.5		
N4—C4—C5—C6	-0.5 (14)	C11—C10—N5—C9	174.3 (8)
C4—C5—C6—C7	0.8 (15)	O2-C10-N5-Fe1	177.8 (10)
C5—C6—C7—C8	-1.8 (15)	C11-C10-N5-Fe1	-4.6 (10)
C6—C7—C8—N4	2.3 (14)	O1-C9-N5-C10	-9.8 (15)
C6—C7—C8—C9	-177.7 (9)	C8—C9—N5—C10	177.0 (7)
С7—С8—С9—О1	9.8 (17)	O1-C9-N5-Fe1	169.0 (9)
N4—C8—C9—O1	-170.2 (10)	C8—C9—N5—Fe1	-4.1 (10)
C7—C8—C9—N5	-176.5 (9)	C1—Fe1—N5—C10	-86.2 (7)
N4—C8—C9—N5	3.4 (11)	N6—Fe1—N5—C10	1.8 (7)
O2-C10-C11-N6	-176.4 (9)	N4—Fe1—N5—C10	-178.4 (7)
N5-C10-C11-N6	5.5 (11)	C2—Fe1—N5—C10	91.6 (7)
O2-C10-C11-C12	-1.4 (15)	C1—Fe1—N5—C9	95.0 (8)
N5-C10-C11-C12	-179.5 (8)	N6—Fe1—N5—C9	-176.9 (8)
N6-C11-C12-C13	-0.2 (13)	N4—Fe1—N5—C9	2.8 (7)
C10-C11-C12-C13	-174.8 (9)	C2—Fe1—N5—C9	-87.2 (8)
C11—C12—C13—C14	0.1 (14)	C12-C11-N6-C15	0.5 (12)
C12—C13—C14—C15	-0.3 (13)	C10—C11—N6—C15	175.9 (8)
C13-C14-C15-N6	0.7 (13)	C12-C11-N6-Fe1	-179.8 (7)
N7—C16—C17—C18	-179.2 (7)	C10-C11-N6-Fe1	-4.5 (9)
C16—C17—C18—C19	-171.5 (8)	C14—C15—N6—C11	-0.8 (13)
N7—C20—C21—C22	176.7 (7)	C14-C15-N6-Fe1	179.6 (6)
C20—C21—C22—C23	177.9 (8)	N5—Fe1—N6—C11	1.7 (6)
N7—C24—C25—C26	-171.5 (7)	C3—Fe1—N6—C11	-179.5 (6)
C24—C25—C26—C27	-176.6 (8)	C1—Fe1—N6—C11	97.9 (6)
N7—C28—C29—C30	168.5 (7)	N4—Fe1—N6—C11	0.5 (17)
C28—C29—C30—C31	175.3 (7)	C2—Fe1—N6—C11	-90.7 (6)
C7—C8—N4—C4	-1.9 (12)	N5—Fe1—N6—C15	-178.7 (8)
C9—C8—N4—C4	178.2 (8)	C3—Fe1—N6—C15	0.2 (8)
C7—C8—N4—Fe1	178.1 (7)	C1—Fe1—N6—C15	-82.4 (8)
C9—C8—N4—Fe1	-1.9 (10)	N4—Fe1—N6—C15	-179.9 (12)
C5-C4-N4-C8	1.1 (13)	C2—Fe1—N6—C15	88.9 (7)
C5-C4-N4-Fe1	-178.9 (7)	C25—C24—N7—C20	-56.5 (10)
N5—Fe1—N4—C8	-0.3 (6)	C25—C24—N7—C16	179.5 (7)
C3—Fe1—N4—C8	-179.2 (6)	C25—C24—N7—C28	59.0 (9)

C1—Fe1—N4—C8	-96.1 (7)	C21—C20—N7—C24	-63.4 (10)
N6—Fe1—N4—C8	0.8 (17)	C21—C20—N7—C16	56.0 (9)
C2—Fe1—N4—C8	92.0 (6)	C21—C20—N7—C28	175.7 (7)
N5—Fe1—N4—C4	179.6 (8)	C17—C16—N7—C24	178.7 (7)
C3—Fe1—N4—C4	0.7 (8)	C17—C16—N7—C20	55.2 (9)
C1—Fe1—N4—C4	83.8 (8)	C17—C16—N7—C28	-59.9 (9)
N6—Fe1—N4—C4	-179.2 (12)	C29—C28—N7—C24	54.5 (10)
C2—Fe1—N4—C4	-88.0 (8)	C29—C28—N7—C20	175.7 (7)
O2-C10-N5-C9	-3.4 (15)	C29—C28—N7—C16	-62.8 (9)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A	
O1W—H1X···O1 ⁱ	0.85	2.12	2.964 (10)	173	
O1W—H1Y···O2W	0.85	2.25	3.058 (10)	158	
O2W—H2X···N2 ⁱⁱ	0.85	2.04	2.895 (10)	180	
O2W—H2Y…N3	0.85	2.18	3.029 (11)	174	
Symmetry codes: (i) $-x+2$, $-y+1$, $-z$; (ii) $-x+3/2$, $y+1/2$, $-z+1/2$.					

